A Zariski Topology for Bicomodules and Corings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Zariski Topology for Bicomodules and Corings

In this paper we introduce and investigate top (bi)comodules of corings, that can be considered as dual to top (bi)modules of rings. The fully coprime spectra of such (bi)comodules attains a Zariski topology, defined in a way dual to that of defining the Zariski topology on the prime spectra of (commutative) rings. We restrict our attention in this paper to duo (bi)comodules (satisfying suitabl...

متن کامل

A Zariski topology for k-semirings

The prime k-spectrum Speck(R) of a k-semiring R will be introduced. It will be proven that it is a topological space, and some properties of this space will be investigated. Connections between the topological properties of Speck(R) and possible algebraic properties of the k-semiring R will be established.

متن کامل

The Basic Zariski Topology

We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed and open subspaces: that is, quotients and localisations. All the effective objects under consideration are introduced by ...

متن کامل

PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a sub...

متن کامل

How to Expand the Zariski Topology

We introduce the notion of a Hu-Liu prime ideal in the context of left commutative rngs, and establish the contravariant functor from the category of left commutative rngs into the category of topological spaces. It is well known that new points must be introduced in order to expand algebraic geometry over algebraically closed fields into Grothendieck’s scheme theory over commutative rings. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Categorical Structures

سال: 2007

ISSN: 0927-2852,1572-9095

DOI: 10.1007/s10485-007-9088-1